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Three-dimensional charge-density maps computed by first-principles methods

provide information about atom positions and the bonds between them, data

which are particularly valuable when trying to understand the properties of

point defects, dislocations and interfaces. This paper presents a method by which

three-dimensional maps of the electrostatic potential, related to the charge-

density map by the Poisson equation, can be obtained experimentally at 1 Å

resolution or better, especially at low accelerating voltages. The method requires

data acquired by holographic transmission electron microscopy methods such as

off-axis electron holography or focal series reconstruction for slightly (e.g. �2�)

different directions of the incident electron beam. The reconstruction of the

three-dimensional electrostatic (and absorptive) potential is achieved by making

use of changes in the dynamical scattering within the sample as the direction of

the incident beam varies.

1. Introduction

Extended defects such as dislocations and interfaces, in

particular solid–liquid interfaces, pose a particular challenge

to atomic scale computational methods. While their

complexity normally requires supercells too large for ab initio

methods, the long-range nature of forces determining their

properties [e.g. strain fields, Coulomb and van der Waals

(dispersion) forces] makes the construction of reliable yet

efficient interatomic potentials, required for molecular

dynamics and related computational methods, an extremely

complicated task. Being able to perform experiments which

directly map the three-dimensional local electrostatic poten-

tial would provide a wealth of information. In the case of

molecular dynamics simulations, for example, it would allow

verification of interatomic potentials by direct comparison

between experiment and simulation for the very (defect)

structure under investigation. For single crystals of small unit

cell it has recently been demonstrated that it is possible to map

the bond charge distribution by fitting Fourier coefficients of

the crystal potential to convergent beam electron diffraction

(CBED) data (Zuo et al., 1999).

Transmission electron microscopy (TEM) images, in the

context of focal series reconstruction (inline holography) over

a large defocus range (Koch, 2008b), are very sensitive to

relative atomic positions and variations in the electrostatic

potential. Although claiming to be able to provide data on the

three-dimensional distribution of atoms, this is not true for

destructive methods such as the three-dimensional atom

probe (Blavette et al., 1993) because the atoms being ‘imaged’

are not extracted from their original environment but from the

sample surface.

The enormous advantages of TEM imaging come at the

price of the lack of a general direct interpretability at atomic

resolution. Although modern electron optics has been able to

produce more directly interpretable images by removing many

of the additional contrast features owing to coherent lens

aberrations, in many cases the images are still not directly

interpretable because of the multiple (or dynamical) scat-

tering of electrons within the sample itself. This is the main

reason why electron tomography has never been applied at

atomic resolution, with the exception of extremely small

nanostructures consisting of light atoms, for which the authors

felt that they could neglect dynamical electron scattering

events (Sadan et al., 2008). Also, at very high resolution it

becomes generally difficult to keep the sample within the field

of view when tilting the sample holder, making automated

acquisition a great challenge.

Attempts to correct for such multiple scattering ‘artifacts’

(i.e. features which cannot be interpreted directly in terms of

the projected electron density and atom core positions) in the

exit face wavefunction have, in the case of thin or non-

crystalline samples, at most been able to reconstruct the

projected potential, averaged along the direction of the elec-

tron beam (Gribelyuk, 1991; Beeching & Spargo, 1993;

Scheerschmidt & Knoll, 1994; Scheerschmidt, 1998; Lentzen &

Urban, 2000; Allen et al., 2001). Applying such a reconstruc-

tion of the projected potential to remove the effect of multiple

scattering in tomography assumes that the average potential

reconstructed for a given projection represents the potential



everywhere along the direction of projection, an assumption

that restricts the application of such methods to homogeneous

samples only.

The method presented below reconstructs directly the local

complex scattering potential, the real part of which is the

electrostatic potential, on a three-dimensional grid by separ-

ating the multiple scattering paths between potential voxels.

2. Real-space multislice algorithm

The following discussion will, in order to keep the equations

readable, only consider the reconstruction of a two-

dimensional structure from a series of one-dimensional

images. The extension to three dimensions is straightforward,

requiring only small changes in the presented formalism.

The proposed reconstruction method is based on the real-

space variant (van Dyck, 1980) of the multislice algorithm

(Cowley & Moodie, 1957) for solving the relativistically

corrected Schrödinger equation describing the propagation of

a fast electron through the specimen potential (see Fig. 1 for

an illustration). In a first step the two-dimensional scattering

potential (remember that this discussion can easily be

extended to three dimensions) is divided into a set of N

discrete horizontal slices of thickness " (the optical axis of the

microscope is assumed to be vertical, the fast beam of elec-

trons travelling down the microscope column) and the

potential within a slice of index m is projected into a one-

dimensional layer of potential

VðmÞðxÞ ¼
R"ðmþ1=2Þ

"ðm�1=2Þ

Vðx; zÞ dz: ð1Þ

The electron propagation is then approximated by multi-

plication of the incident wavefunction by a phase grating,

�ðmÞðxÞ ¼ exp i�VðmÞðxÞ
� �

; ð2Þ

at the position of each slice and Fresnel propagation between

the slices, where

� ¼ 2� mec2 þ E0

� �
= �E0 2mec2 þ E0

� �� �
ð3Þ

is the electron-potential interaction constant (see Fig. 2 for a

plot of � and � as a function of electron beam energy).

We will assume an incident plane wave A expð2�ik � rÞ =

A exp½2�iðkxxþ kzzÞ� arriving at the sample at an angle � =

sin�1
ðkx=kzÞ. Since holographic experiments can measure

relative phases but not the absolute phase of an electron

wavefunction, we will define z = 0 in the plane of the exit face

wavefunction, fixing the z dependence of the wavefunction at

the entrance surface. Including this z-dependent phase factor

in the complex but position-independent scaling factor A we

obtain �ðkxÞðxÞ = AðkxÞ expð2�ikxxÞ at the entrance surface of

the specimen. The electron wavefunction at the exit surface

can then be obtained by the real-space multislice formalism

(van Dyck, 1980) as

�ðkxÞðxÞ ¼ �ðNÞðxÞ exp "�
i�x

4�
� kxrx

� �� 	
� � �

��ð2ÞðxÞ exp "�
i�x

4�
� kxrx

� �� 	
�ð1ÞðxÞ

� AðkxÞ exp 2�ikxxð Þ: ð4Þ

Here � = 1=kz = hc=½E0ð2me þ E0Þ�
1=2 is the electron wave-

length, E0 is the accelerating voltage, h is Planck’s constant, c

is the speed of light, me is the mass of an electron, �x is the

Laplace operator and rx is the gradient in the x direction.

Implementing the multislice algorithm on a computer

requires a discrete grid in the lateral dimension in addition to

the discrete slices in the z direction. Keeping the lateral

sampling distance �x constant, we may simplify the notation by

defining a dimensionless imaginary parameter �kx
= 2�i�xkx

and replacing x by jx�x, �ðxÞ by �jx
, VðmÞðxÞ by V

ðmÞ
jx

, �ðmÞðxÞ by
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Figure 1
Multislice approximation to dynamical scattering in real space. The
scattering of the incident electron beam described by a plane wave is
approximated by a finite number of scattering events at equidistant layers
partitioning the sample in the z direction. As a consequence, the signal in
the exit face wavefunction is non-local, including contributions from a
number of scattering paths, the relative phases of which can be varied by
changing the illumination tilt angle �x = sin�1 kx�.

Figure 2
Plot of the electron wavelength � and electron-potential interaction
strength � as a function of accelerating voltage.



�ðmÞjx
and expð2�ikxxÞ by expð�kx

jxÞ. This also makes the

translation of the following equations into a computer

program a bit more apparent.

Expanding the Fresnel propagation operator by using the

relations

�x�ðxÞ ¼
�ðxþ �xÞ � 2�ðxÞ þ�ðx� �xÞ

�2
x

; ð5Þ

rx�ðxÞ ¼
�ðxþ �xÞ ��ðx� �xÞ

2�x

; ð6Þ

we obtain

exp

"
i"�

4�

�
�x þ �kx

rx

�#
�ðxÞ

¼

(
1þ

i"�

4�
�x þ �kx

rx

� �
þ

1

2

i"�

4�
�x þ �kx

rx

� �� 	2

þ . . .

)
�ðxÞ

¼ �ðxÞ þ � ð1þ �kx
Þ�jxþ1 � 2�jx

þ ð1� �kx
Þ�jx�1

� �
þ
�2

2
ð1þ �kx

Þ
2�jxþ2 � 4ð1þ �kx

Þ�jxþ1

�
þ ð6� 2�2

kx
Þ�jx
� 4ð1� �kx

Þ�jx�1

þ ð1� �kx
Þ

2�jx�2

�
þO �3

� �
ð7Þ

in orders of approximation of the Ewald sphere curvature

given by the parameter

� ¼ i"�= 4��2
x

� �
: ð8Þ

The sampling distance �x (i.e. the detector pixel size divided by

the magnification) is typically chosen to be quite a bit smaller

than the image resolution defined by aberrations of the elec-

tron optics, the stability of the microscope and the size of the

objective aperture (e.g. 0.1–0.5 Å for high-resolution TEM at

1 Å resolution).

By choosing the appropriate real-space sampling, slice

thickness and electron accelerating voltage, one can force � to

have a fairly small value. Expression (8) also indicates that for

a given real-space sampling �x and fixed � the slice thickness "
is inversely proportional to the electron wavelength �. This

means that, in order to achieve convergence in the forward

simulation, smaller slice thicknesses must be used at lower

accelerating voltages. This also means that for the recon-

struction algorithm proposed below a higher resolution in the

third dimension may be achieved if the accelerating voltage is

decreased.

Plugging the expansion of the Fresnel propagator (7) into

(4) we can expand the expression for the exit face wave-

function in orders of �. The first-order expansion neglecting,

for the moment, terms of order �2 and higher is

�
ðkxÞ

jx
¼ AðkxÞ exp �kx

jx

� �
�ðNÞjx

QN�1

m¼1

�ðmÞjx




þ � exp �kx

� �
1þ �kx

� � PN�1

k¼1

Qk
m¼1

�ðmÞjxþ1

QN�1

m¼kþ1

�ðmÞjx

�

þ exp ��kx

� �
1� �kx

� � PN�1

k¼1

Qk
m¼1

�ðmÞjx�1

QN�1

m¼kþ1

�ðmÞjx

�2ðN � 1Þ
QN�1

m¼1

�ðmÞjx

	
þOð�2Þ

�
: ð9Þ

Note here that the first term, the zeroth-order expansion, is

independent of � and is just the well known phase object

approximation which includes multiple scattering to the Nth

order but neglects effects owing to curvature and tilt of the

Ewald sphere.

Fig. 3(a) illustrates expression (9) graphically for an object

partitioned into four layers. Examples of the two possible

scattering paths that scale as �2 are shown in Figs. 3(b) and

3(c). While the conventional multislice algorithm (Ishizuka &

Uyeda, 1977) iterating between real and reciprocal space

naturally includes all orders �n, in real-space algorithms they

need to be included explicitly. Since increasing n slows down

the computation enormously, terms Oð� n	3Þ in the computa-

tion of a single Fresnel propagation are usually neglected. An

algorithm approximating the Fresnel propagation up to

Oð� n¼1Þ will only have those contributions of Oð� n	2Þ to the

final wavefunction of the type shown in Fig. 3(b), i.e. multiple

�x operations, but neglect the equally important contributions

shown in Fig. 3(c).

3. Solving the inverse problem

The aim of this paper being the determination of the three-

dimensional scattering potential from the observed images, we
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Figure 3
Diagram of the first- (a) and second-order (b, c) approximation of the
Ewald sphere curvature effects in the real-space multislice algorithm for
kx = 0. The �x operator is depicted by a node merging three paths, and
the �2

x operator by a node merging five paths. Multiplying the scattering
potential along the red solid, blue dashed and green dotted paths in (a)
will produce all the possible terms that are linear in �, i.e. which involve
only a single �x operator. Terms resulting from paths shown in (b) and (c)
(only one possible path is shown in each) are proportional to �2 and
involve either two successive �x operations or a single �2

x operation.



must consider the contributions to the exit face wavefunction

in the order of significance, i.e. all terms up to a given order

Oð�nÞ. Taking a closer look at Fig. 3 makes it clear that in

order to reconstruct N slices one needs to expand the Fresnel

propagation up to at least n = ðN � 1Þ=2 (rounding up for even

N). The resulting system of polynomial equations of degree N

is sparse and may be solved using globally convergent algo-

rithms for solving multivariate polynomial sets of equations

[see, for example, Sherali & Tuncbilek (1992) with an example

application to the inversion of dynamical CBED patterns

given by Koch (2008a)]. A more practical method of solving

the inverse problem seems to be a refinement approach in

which the first initial guess is obtained by the linear approx-

imation (11) to expression (9).

Holographic methods such as off-axis electron holography

(Möllenstedt & Düker, 1956; Tonomura et al., 1979; Lichte,

1985), but also focal series reconstruction (Kirkland, 1984;

Kirkland et al., 1995; Coene et al., 1996; Kawasaki et al., 2001;

Allen & Oxley, 2001; Vincent, 2002; Hsieh et al., 2004; Allen et

al., 2004; Bhattacharyya et al., 2006; Koch, 2008b), are able to

reconstruct the complex exit face wavefunction for each

incident beam tilt. If, as is common practice, in the off-axis

holographic reconstruction the side band is properly centered,

and in the focal series reconstruction the images are aligned by

cross-correlation or similar methods, neither of these methods

will reconstruct the global phase shift expð�kx
jxÞ that is asso-

ciated with the tilted illumination [the relative phase factors in

the second and third term of (9) remain though]. We can

therefore drop this factor altogether. However, a reference

point common to wavefunctions of different incident beam tilt

must still be chosen in order to fix the complex coefficients

AðkxÞ. A vacuum region or another area of well known scat-

tering properties within the field of view would be ideal, but if

no such reference point can be defined the AðkxÞ parameters

can also be included as free parameters in the nonlinear

reconstruction algorithm. We will assume AðkxÞ = 1 in the

example presented below.

3.1. Linearized reconstruction algorithm

For demonstration purposes, and in order to reveal the

principles of the proposed methodology independent of the

performance of a given polynomial equation solver, let us

approximate the system of polynomial equations (9) by

expanding the phase grating �ðmÞjx
in terms of the potential

assuming the validity of the weak phase object approximation.

For a structure that has been split into N = 3 layers we

obtain

�ð3Þjx3
�ð2Þjx2

�ð1Þjx1
¼ exp i�V

ð3Þ
jx3

h i
exp i�V

ð2Þ
jx2

h i
exp i�V

ð1Þ
jx1

h i
’ 1þ i�V

ð3Þ
jx3
þ i�V

ð2Þ
jx2
þ i�V

ð1Þ
jx1
; ð10Þ

converting (9) into the following linear system of equations,

�
ðkxÞ

jx
’ AðkxÞ exp �kx

jx

� �
1þ i�

PN
m¼1

V
ðmÞ
jx




þ � exp �kx

� �
1þ �kx

� � PN�1

k¼1

1þ i� V
ðNÞ
jx
þ
Pk
m¼1

V
ðmÞ
jxþ1

�
�

þ
PN�1

m¼kþ1

V
ðmÞ
jx

	�

þ exp ��kx

� �
1� �kx

� � PN�1

k¼1

1þ i� V
ðNÞ
jx
þ
Pk
m¼1

V
ðmÞ
jx�1

�


þ
PN�1

m¼kþ1

V
ðmÞ
jx

	�

�2ðN � 1Þ 1þ i�
PN
m¼1

V
ðmÞ
jx

� 	�
þOð�2

Þ

�

¼ AðkxÞ exp �kx
jx

� �
1þ i�

PN
m¼1

V
ðmÞ
jx

�

þ� exp �kx

� �
1þ �kx

� �
i�
PN�1

k¼1

Pk
m¼1

V
ðmÞ
jxþ1 þ

PN�1

m¼kþ1

V
ðmÞ
jx

� 	


þ exp ��kx

� �
1� �kx

� �
i�
PN�1

k¼1

Pk
m¼1

V
ðmÞ
jx�1 þ

PN�1

m¼kþ1

V
ðmÞ
jx

� 	

�2ðN � 1Þ 1� cosði�kx
Þ þ i�kx

sinði�kx
Þ

� �
1þ i�V

ðNÞ
jx

h i
�2ðN � 1Þi�

PN�1

m¼1

V
ðmÞ
jx

�
þOð�2

Þ

�
; ð11Þ

the solution of which is almost straightforward. It turns out

that the matrix defining the resulting system of equations is

slightly rank-deficient, because there remain N � 1 degrees of

freedom, the overall relative phase relationships between the

N layers. Defining the relative potential of one column of

pixels [e.g. in the example shown in Fig. 5 three additional

linear equations are defined that force the potential to be zero

(vacuum) for the right-most pixel in each of the three layers]

will remove this degree of freedom and produce, in the

absence of noise, a unique reconstruction. A more general

approach, especially if no vacuum is within the reconstructed

volume, would be to fix the mean potential of each layer by

defining it to be zero. This degree of freedom corresponds to

the physically meaningful inability to measure the absolute

phase of the electron wavefunction.

The sensitivity with respect to noise of this linearized

reconstruction is directly related to the size of the parameters

�kx
, � and �. If the product ��kx

� is zero, the system of

equations defined by (11) is rank-deficient and cannot be

solved. Fig. 4 shows how the product of these parameters

depends on the tilt range and electron beam energy. Although

the occurrence of these parameters in (11) is a bit more

complicated, to first-order approximation an increase in this

product very likely increases the condition number of the

resulting system of linear equations and with that the

robustness of the reconstruction with respect to noise in the

input data. It becomes therefore quite obvious that working at

low accelerating voltage will allow the reconstruction to work

for very small slice thicknesses ".

Acta Cryst. (2009). A65, 364–370 Christoph T. Koch � Three-dimensional potential reconstruction 367

research papers



3.2. Example

Fig. 5(a) shows the phase shift of a trial structure that has

been sliced into three equidistant slices. Scattering factors and

length scales have been scaled to those of the gold (110)

lattice, in order to mimic actual experimental conditions. The

system of linear equations (11) has been solved using singular

value decomposition, and the result is shown in Fig. 5(b). Since

no noise has been included in this test, it is not surprising that

the reconstruction and original look identical. The fairly low

accelerating voltage of only 60 kV causes � (multiple scat-

tering strength), � (Ewald sphere curvature) and ��kx
(illu-

mination tilt sensitivity) to be of large enough values to make

a three-dimensional atomic resolution reconstruction of

nanostructures feasible, even in the presence of noise and for

small beam tilt angles.

Some iterative tomographic reconstruction algorithms

allow the specimen geometry to be used as a constraint, in

principle being able to reconstruct an object consisting of only

N distinct layers to be reconstructed from N projections only.

The angle between these N projections must, however, be

quite large. Although requiring the same minimum number of

tilt angles, in contrast to (linear) tomography, where the three-

dimensional information is introduced by projecting along

different directions, making use of dynamical scattering as

proposed here implies a tilt-angle dependent (complex)

weighting factor for a set of monomials (individual terms) in

the polynomial system of equations (9). These weighting

factors depend strongly on the accelerating voltage and can

therefore be tuned to the scattering strength of the material,

available beam tilt range and desired resolution in the direc-

tion parallel to the electron beam. Modern TEMs, being able

to achieve atomic resolution imaging at E0 
 60 kV (e.g.

Kisielowski et al., 2008), will therefore be able to image the

three-dimensional potential distribution within nano-

structures at atomic resolution without having to tilt the

specimen.

4. Discussion

4.1. Comparison with linear tomographic reconstruction

The question now arises as to how this reconstruction

method compares with conventional linear tomographic

reconstruction algorithms. One difference already mentioned

is certainly that linear reconstruction algorithms must neglect

any multiple scattering effects and will therefore produce

artefacts if the input data were produced by dynamically

scattered electrons.

Another aspect is the tilt range that is necessary to achieve

the desired resolution in the third dimension. Under the

assumption of noise-free input data and a perfect (algebraic)

tomographic reconstruction algorithm, Fig. 6(a) shows the

volume in reciprocal space which can be reconstructed for a

beam tilt of �2�. Note that there is a factor of about ten

between the scales of the axes. At a real-space sampling

distance of 0.5 Å (qx = 1 Å�1) the achievable resolution in the

z direction is at most 1.4 nm, if very many different tilt angles

are used. Adding just a little bit of noise to the input data will

quickly produce missing-wedge artefacts. This result cannot be

altered by changing the accelerating voltage, except for the

possible increase or reduction of dynamical scattering

effects by lowering or raising the electron beam energy,

respectively.

For the same real-space sampling of �x = 0.128 Å the Ewald

sphere curvature parameter �ðE; �x; "Þ, on the other hand, is

still finite for slice thicknesses " = 1 Å (qz = 0.25 Å�1), which

means that, depending on the accelerating voltage and the

signal-to-noise ratio of the input data, a very high resolution in

the z direction may be achievable.
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Figure 4
Plot of the tilt-dependent linear independence parameter ��kx

� of the
system of linear equations (11) as a function of electron beam energy E0

and tilt angle �x for a slice thickness " = 2.04 Å and sampling �x = 0.128 Å.
This product is proportional to " and inversely proportional to �x .

Figure 5
Phase shift ’ðmÞðxÞ = �VðmÞðxÞ for a three-layered ‘phantom’ structure (a)
and the phase shift reconstructed from it using the linear approximation
to (9) (b) demonstrating a three-dimensional reconstruction at atomic
resolution. The scattering factor and lattice constant correspond to that of
gold. The ‘defect’ sites have been created by simply scaling the scattering
factor of gold by a number less than 1 (individual defects from left to
right; second row: 0.5, 0.5, 0, 0.7; third row: 0.3). Absorption has been
included by multiplying the potential VðmÞðxÞ by (1 + 0.1i). Simulation
parameters: object potential grid 240 � 3 pixels, �x = 0.128 Å, " = 2.04 Å,
E0 = 60 kV, � = 0.0011 (V Å)�1, � = 0.49i, five different tilt angles of the
incident beam: � = �1� (�kx

= �0.29i), � = �0.3� (�kx
= �0.086i), � = 0�

(�kx
= 0i), � = 0.7� (�kx

= 0.20i), � = 1� (�kx
= 0.29i).



4.2. Noise sensitivity

Estimating the effect of noise on the quality of this dyna-

mical scattering inversion scheme would require the simula-

tion of image or hologram intensities, the assumption of

proper signal and detector noise statistics, the reconstruction

of the individual wavefunctions from either focal series or off-

axis holograms, and the three-dimensional reconstruction

using this algorithm.

A much more simple, though arguably not the most

meaningful, way of doing this is to add Gaussian noise to the

complex wavefunctions. Because of being reconstructed from

a (large) number of individual images, wavefunctions obtained

by focal series reconstruction tend to have very good signal-to-

noise properties. Fig. 7 shows reconstructions which have been

obtained by adding Gaussian noise to both the real and

imaginary parts of the wavefunctions simulated for the

complex-valued input object potential used in the example of

Fig. 5. The accelerating voltage was again 60 kV, the slice

thickness " = 2.04 Å and the sampling distance �x = 0.128 Å.

Each of the simulations and subsequent reconstructions was

performed for seven equally spaced tilt angles ranging from

�1� to +1� for the upper two reconstructions and from �2�

to +2� for the lower ones. This result shows how an increase in

tilt range can improve the robustness of the reconstruction

algorithm.

If this algorithm is used at atomic resolution, additional

constraints could be imposed on the reconstructed data. Those

constraints could be atomicity (i.e. peaks in the potential are

assumed to be due to the presence of atoms and cannot

therefore be arbitrarily sharp or too close to one another),

positivity (both absorption and elastic scattering potential

inside the specimen should be positive, and also peaks in the

absorption should correlate with peaks in the elastic scattering

potential) etc. So far, none of these constraints has been

imposed, leaving much room for improvement of the robust-

ness of the reconstruction method beyond what has been

shown here.

It should also be noted that exit wave reconstruction for

several illumination tilt angles is only one of several methods
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Figure 7
Test of linear reconstruction algorithm for different noise levels and
maximum tilt angles. Wavefunctions for seven equally spaced tilt angles
(ranging from either �1� to +1� or �2� to +2�) were simulated for the
object shown in Fig. 5(a). Gaussian noise with a standard deviation of
0.1% and 0.5% of the maximum contrast was added independently to the
real and imaginary parts of all the wavefunctions. The real part of the
three-dimensional reconstructed potential is shown.

Figure 6
(a) Volume in reciprocal space which can be reconstructed from a tilt
series spanning a tilt range of �2� to +2�. Depending on the real-space
sampling along the x direction (�x), a corresponding resolution in the z
direction of " = �x= tanð�maxÞ can be achieved, assuming a perfect
reconstruction algorithm and noise-free data. (b) The �-normalized
Ewald sphere curvature parameter �ðE; "; �xÞ=� spans a much larger
range of reciprocal space, independent of the tilt range. However, one
must look at the combined effects of the parameters �, �kx

and � to
quantitatively predict the robustness of the reconstruction for a given set
of parameters (see also Fig. 4).



for acquiring the experimental data required for the three-

dimensional reconstruction described above. Alternative

methods include Rönchigram focal series recorded for

different illumination or specimen shifts and, of course,

holographic experiments at different specimen tilts.

5. Conclusion

Summarizing, a method for reconstructing the three-

dimensional electrostatic potential of a TEM sample has been

proposed. The method is based on a reformulation of a real-

space multislice formulation for computing the multiple scat-

tering of a fast electron within a TEM sample in terms of a

polynomial set of equations, identifying and keeping the most

significant terms. The solution of the resulting sparse multi-

variate polynomial system of equations can be found by

applying either multivariate polynomial equation global

optimization algorithms available in the literature or refine-

ment of a solution to the linearized version of the set of

equations.

In the special case that the weak phase object approxima-

tion is valid, the polynomial system of equations transforms

into a linear system of equations which can be solved by

standard methods. Applying this simplification, a two-

dimensional complex test object consisting of three layers has

been reconstructed successfully from five one-dimensional

electron wavefunctions simulated for illumination tilt angles

ranging from �1� to +1�. The construction of an efficient

global optimization algorithm specialized for the particular

type of systems of polynomial equations described in this

paper is planned for the near future.
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Möllenstedt, G. & Düker, H. (1956). Z. Phys. 145, 377–397.
Sadan, M. B., Houben, L., Wolf, S. G., Enyashin, A., Seifert, G., Tenne,

R. & Urban, K. (2008). Nano Lett. 8, 891–896.
Scheerschmidt, K. (1998). J. Microsc. 190, 238–248.
Scheerschmidt, K. & Knoll, F. (1994). Phys. Status Solidi A, 146, 491–

502.
Sherali, H. D. & Tuncbilek, C. H. (1992). J. Global Optim. 2, 101–112.
Tonomura, A., Matsuda, T., Endo, J., Todokoro, H. & Komoda, T.

(1979). J. Electron. 28, 1–11.
Vincent, R. (2002). Ultramicroscopy, 90, 135–151.
Zuo, J., Kim, M., O’Keeffe, M. & Spence, J. (1999). Nature (London),

401, 49.

research papers

370 Christoph T. Koch � Three-dimensional potential reconstruction Acta Cryst. (2009). A65, 364–370


